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PREFACE

This research paper presents an efficient new algorithm for computing the
exact area of overlap of an ellipse and a convex polygon. Its fundamental
idea originated with Dr. Dennis F. DeRiggi of the US Army Concepts Analysis
Agency (CAA), who used it to develop an algorithm for computing the exact
area of overlap of a disk and a rectangle. Dr. Robert L. Heimbold, also of
CAA, subsequently observed that DeRiggi's approach generalized in an obvious
way to ellipses and convex polygons.

The problem of finding the area of overlap of two generic figures of
prescribed shapes, sizes, orientations, and locations arises frequently in
military operations research. Damage functions are often modeled as circular
"cookie-cutters," and targets are frequently represented as disks or
rectangles. Convenient formulas or algorithms are available for calculating
exactly the area of overlap of two disks, or of two rectangles oriented so
that their sides are parallel. They appear to be widely known and are often
used by the military OR community.

In addition, several methods for numerically approximating the area of
overlap of a disk and a rectangle are available and widely used. However,
they can be wildly- inaccurate for certain configurations of the disk and
rectangle, none generalize easily to the case of an ellipse and convex
polygon, and they can be impractically slow and expensive when very high
accuracy is required. Hence, an efficient algorithm for calculating the
exact area of overlap of an ellipse and a convex polygon would be useful in
many military OR simulations and analyses.

Such an algorithm is described in this research paper.
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represent the area of effect of a weapon and a polygon is used to approximate
the target's configuration. Questions or inquiries should be directed to our
Office of Special Assistant for Model Validation, U.S. Army Concepts Analysis
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AN ALGORITHM FOR CALCULATING STUDY
THE AREA OF OVERLAP OF AN SUMMARY"CSAAt* ELLIPSE AND A CONVEX POLYGON CAA-RP-87-4

THE REASON FOR PERFORMING THIS STUDY was to develop and document an
improved algorithm for determining in computer simulations the area of
overlap of an ellipse and a convex polygon.

THE PRINCIPAL FINDINGS are that a useful algorithm can be developed for
determining in computer simulations the area of overlap of an ellipse and a
convex polygon. It appears to be a new method offering many advantages over
those previously proposed.

THE MAIN ASSUMPTION is that the polygon is convex.

THE PRINCIPAL LIMITATION is that numerical roundoff error may, under some
conditions, reduce the accuracy of the result.

THE SCOPE OFTHE WORK is limited to determining the area of overlap of an
ellipse and a convex polygon.

THE RESEARCH OBJECTIVE was to develop and document an algorithm for
determining in computer simulations the area of overlap of an ellipse and a
convex polygon.

THE WORK WAS SUPPORTED BY the US Army Concepts Analysis Agency.

Tear-out copies of this synopsis are at back cover.
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CHAPTER I

EXECUTIVE SUMMARY

1-1. PROBLEM. Develop an algorithm which, given an ellipse and a (convex)
polygon, calculates their area of overlap, i.e., the area common to both the
ellipse and the rectangle. For example, in Figure 1-1 the area of overlap is
shown as a shaded region.

Figure 1-i. Area of Overlap

1-2. BACKGROUND

a. Need. The need for estimating the area of overlap of a disk and a
rectangle, which is a special case of an ellipse-polygon overlap, arises
frequently in computer simulations of military operations. Rectangles are
often used to represent regions occupied by troops, civilian population
centers, or other target elements, while disks are used to represent damage
zones of nuclear weapons. For instance, the Nuclear Fire Planning and
Assessment Model (NUFAM) used at the US Army Concepts Analysis Agency (CAA)
employs rectangles to represent military unit positions and disks to
represent nuclear effects coverage zones. Since rectangles and disks are
frequently used in this way, the problem of estimating their area of overlap
is a familiar one and various solutions to it have been proposed. A few of
these are mentioned below with no attempt to be exhaustive. Presumably, many
others have been put forward at one time or another.

b. Theoretically Exact Procedures. It is, in principle, possible to
decompose the area of overlap into a finite number of figures bounded by
circular arcs and straight lines. Then mensuration formulas or integral
calculus can be applied to find the area of each figure, and the area of
overlap obtained

0 IleN
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as their sum. This method provides theoretically exact results, since no
numerical approximations other than those involved in finite arithmetic pre-
cision are required. However, attempts to program this approach on computers
have shown it to be extremely cumbersome. The practical difficulty is that a
large number of special cases must be considered, depending on how the disk
intercepts the rectangle. Hence the algorithm must be arranged to determine
which of the special cases applies, to subdivide the area of overlap appro-
priately, and to apply the correct mensuration formula to each subdivision.
This proves exceedingly tedious to implement. Moreover, this approach does
not generalize readily to the overlaps of polygons with either disks or
ellipses.

c. Replace Rectangle with an Array of Points. In this approach the
rectangle is replaced by an array of regularly spaced points, each of which
represents a smaller rectangle. The area of overlap is approximated by
multiplying the fraction of points within the disk by the area of the
original rectangle. This is illustrated in Figure 1-2, where the area of
overlap is estimated as 3/9 = 1/3 of the area of the original rectangle. The
method is easy to understand and simple to program. However, its accuracy is
low when the disk is small compared to the rectangle, and when few points are
used in each rectangle. Increasing the number of points used in each
rectangle sharply increases the computational time required. Moreover, the
generalization to ellipses and polygons would be cumbersome and tedious.

II

I

Figure 1-2. Replace Rectangle with a Regular Array of Points

1-2
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d. Random Points in Rectangle. Here a certain number of points in the
rectangle are selected randomly, and the area of overlap estimated as the
fraction of them inside the disk. This Monte Carlo approximation to the area
of overlap has all the usual advantages and disadvantages of that method. In
particular, many points are needed if the result is to be numerically
accurate and statistically reliable. Moreover, the generalization to
ellipses and polygons is not evident.

e. Functional Approximation. This approach begins by considering the
characteristic functions of the rectangle and the disk, where the charac-
teristic function of any region is defined to be equal to one for points in
the region, and zero elsewhere. Then the area of overlap of any two regions
is just the integral of the product of their characteristic functions. Since
the product of the characteristic functions vanishes outside the area of
overlap, the integral may be carried out over all space, ard that is at least
a useful theoretical simplification. In the functional approximation method,
the (discontinuous) characteristic functions of the rectangle and disk are
approximated by continuous functions. The functions used can be polynomials,
Fourier series, orthogonal series of various types, and so forth. One diffi-
culty with this approach is that it often is hard to estimate the accuracy of
the result. Another is that several terms must be carried in the functional
approximation. Moreover, a familiarity with advanced mathematical methods is
needed to understand the method and to implement it properly. Finally, the
generalization to ellipses and polygons would add measurably to the
complexity of this approach.

f. Curve Fitting. Here a number of trial cases are accurately computed,
and the results are tabulated against such key parameters of the situation as
the rectangular dimensions of the rectangle, the offset of the disk's center
from the center of the rectangle, and radius of the disk. (Usually these are
normalized to some standard dimension, such as the disk's radius.) A more or
less arbitrary function is then fitted to the tabulated values, and used to
estimate the area of overlap for other values of the key variables. This is
simple in conception. However, it is not easy to determine whether the
functional form used for the fitting process gives satisfactorily accurate
values for situations different from those used to obtain the tabulated
values. Moreover, it depends on having a number of cases for which the area
of overlap is accurately known, and so to that extent assumes what is to be
found. Finally, curves fitted to the disk-rectangle case have no application
to the general ellipse-polygon case.

g. Replace Disk by an Approximating Family of Rectangles. Here the disk
is replaced by a family of rectangles, as illustrated in Figure 1-3. Now, it
turns out that there is a fast, finite, simple algorithm for calculating the
area of overlap of two rectangles whose sides are parallel. This algorithm
is applied to find the area of overlap between the original rectangle and
each member of the approximating family of rectangles. The sum of these
individual areas is an estimate of the area of overlap of the disk and the
rectangle. This method is often surprisingly accurate with even a few (12 to
20) rectangles in the approximating family. However, it is not a theo-
retically exact method, and it does not generalize readily to the ellipse-
polygon case.

0 1-3
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Sf I l

Figure 1-3. Replace Disk with a Family of Rectangles

1-3. SCOPE. This paper develops an algorithm for calculating the area of
overlap of an ellipse and a convex polygon. This algorithm is believed new,
and it differs from those mentioned in paragraph 1-2. It -as several
advantages over those previously proposed.

1-4. LIMITATIONS. The principal limitation is that numerical roundoff error
may under some conditions reduce the accuracy of the result.

1-5. TIMEFRAME. Not applicable.

1-6. KEY ASSUMPTIONS. The key assumption is that the polygon is convex.

1-7. APPROACH

a. The approach used is to reduce, by a series of stages, the original
problem to a finite number of similar problems, all of which are conceptually
similar so that a single algorithm easily solves each of them. The key
concepts involved at each stage of this reduction are very briefly summarized
here, and are described more fully in Chapter 2.

1-4
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b. First, any ellipse-polygon overlap case can be reduced to an
equivalent disk-polygon overlap situation by an affine transformation of
coordinates that shrinks the major axis of the ellipse until its equal to the
minor axis. Such a transformation clearly maps the original convex polygon
onto some other, but also convex, polygon. So the problem has now been
reduced to one of finding the area of overlap of a disk with the interior of
a convex polygon.

c. Second, observe that since the area of the disk is known, its area of
overlap with the interior of the polygon could easily be found if we knew its
area of overlap with the exterior. We now focus on finding the disk's area
of overlap with the exterior of the polygon.

d. Third, to facilitate our work, the boundary of the new convex polygon
is given a definite orientation. In this paper we will always use the
conventional mathematical orientation according to which the counterclockwise
direction is considered positive. Figure 1-4a shows a convex polygon with
its vertices numbered in positive order. This orientation of the polygon
orients, or gives a positive direction to, each of its. sides.

I2

44

5 6

Figure 1-4a. Convex Polygon with Vertices Numbered in
Positive Order

i . . . .. .. . . -5
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e. Fourth, to facilitate our work, each edge of the polygon is, by geo-
metric construction, extended indefinitely in its positive direction. Figure
1-4b shows this construction. Observe that these construction lines parti-
tion the region exterior to the polygon into a finite number of unbounded but
disjoint (i.e., nonoverlapping) wedge-shaped regions. (Here the polygon's
convexity plays a crucial role. If the polygon is not convex then the
construction of Figure 1-4b leads to wedge-shaped regions that are not
disjoint.) There is exactly one such wedge-shaped region for each vertex of
the polygon.

5 6

/

//
//

Figure 1-4b. Construction Lines

f. Fifth, observe that the construction of the last step reduces the
problem (of finding the area of overlap of a disk with the exterior of a
convex polygon) to one of finding the overlap of a disk with a typical wedge-
shaped region. The area of overlap of the disk with the exterior of a convex
polygon is simply the sum of its areas of overlap with each of the wedge-
shaped regions constructed as shown in Figure 1-4b. (The validity of this

1-6
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statement depends crucially on the disjointness of the wedge-shaped regions,
and hence on the convexity of the polygon.)

g. Sixth, it happens that there is a simple, convenient, finite, theo-
retically exact algorithm for calculating the area of overlap of a disk and a
wedge-shaped region of the sort shown in Figure 1-4b. Hence, the problem of
finding the individual disk-wedge overlap areas can be considered as easily
solved. This completes our reduction of the original problem to a finite
number of similar problems, all of which are conceptually similar, so that a
single algorithm easily solves each of them.

1-8. CONCLUSIONS. A simple finite algorithm suffices to calculate the area
of overlap of an ellipse and a polygon. The resultant algorithm is widely
applicable in the sense that it gives theoretically exact answers for all
possible configurations of the ellipse and the polygon. It is user-friendly
in the sense that its implementation involves a straightforward computation
whose net result is easily discernable. As a result, the algorithm should be
easy to verify, debug, modify, or incorporate confidently into larger pro-
grams. The accuracy of the computation can be maintained by using double-
precision arithmetic to control roundoff errors.

1-9. OBSERVATIONS

a. Practical implementation of the algorithm would be aided by developing
subroutines--optimized for speed--for incorporation into large simulations or
wargames such as NUFAM, CEM, FORCEM, COSAGE, VIC, and others.

b. The method yields the exact area of overlap of an ellipse with a con-
vex polygon. Since a triangle is convex, the method is in principle capable
of being applied to find the exact area of overlap of an ellipse with any
finite region that can be triangulated, i.e., with any polygon. Triangu-
lation is not actually necessary--any decomposition of the polygonal region
into disjoint convex polygons is sufficient.

c. Many regions that arise in practice can be approximated satisfactorily
by polygons. Hence, the method can in principle be applied to approximate
the area of overlap of an ellipse with a fairly arbitrary region of the sort
that often arises in practice.

d. Although it may not be the most efficient algorithm for the purpose,
the method can in principle be used to find the area of any convex polygon.
All that is necessary is to find the area of overlap of the polygon with a
disk whose radius is sufficiently large that it completely covers the
polygon. If the area of overlap does not change when the disk's radius is
increased slightly, then the radius is sufficiently large.

1-7



*$ CAA-RP-87-4

CHAPTER 2

APPROACH

2-1. INTRODUCTION. We start with the ellipse and polygon in general
configuration in a two-dimensional Cartesian coordinate system, as shown in
Figure 2-1. This chapter explains how the general configuration is reduced
to a disk-polygon overlap situation. The mathematical details of the further
reduction to a finite number of disk-wedge overlap problems are provided in
Appendix A. A computer program to implement the solution is presented in

Appendix 8. Examples of overlap areas computed using this computer program
are given in Chapter 3.

Y

40 -

30-

20-

, 10

0 10 20 30 40 50 60

Figure 2-1. Ellipse and Polygon in General Configuration
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2-2. DESCRIBE THE CONFIGURATIONS OF THE POLYGON AND ELLIPSE. The first step
is to describe the configurations of the polygon and the ellipse relative to
a two-dimensional Cartesian coordinate system. By referring to Figure 2-1,
we see that this can be done by specifying the following items:

a. For the polygon, the number and coordinates of its vertices. (It is
essential that the vertices be listed in positive order, as the algorithm
assumes this.) Let N be the number of vertices in the polygon, and let
(PX(J), PY(J)) for J = I to N be the Cartesian coordinates of the vertices,
listed in positive order.

b. For the Ellipse

(1) The coordinates (XE, YE) of its center.

(2) Its semi-major and semi-minor axes (RX and RY, respectively).

(3) Its orientation angle, i.e., the angle (TDEG) from the x-axis to
its major axis, in degrees. The algorithm assumes that TDEG is in the range

-900 < TDEG +90Q.

2-3. REDUCE TO DISK-POLYGON OVERLAP SITUATION

a. Affine Transformation. The reduction is accomplished by an affine
transformation that shifts the origin of the coordinate system to the center
of the ellipse, rotates it so that the new x-axis is parallel to the major
axis of the ellipse, and then shrinks the ellipse's major axis until it
equals the minor axis. The algorithm to do that is described below.

b. Shift Origin and Rotate Axes. For each vertex, put

X(J) = + (PX(J) - XE) * Cos (TOEG) + (PY(J) - YE) * Sin (TDEG)
Y(J) = - (PX(J) - XE) * Sin (TDEG) + (PY(J) - YE) * Cos (TDEG)

c. Shrink New x-Axis. For each vertex, put

X(J) = X(J) * RY/RX

d. State Disk Radius. Put the disk radius, R RY.

2-2
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e. Results. Figure 2-2 shows the transformed (disk-polygon) configura-
tion. Because of the shrinkage involved, the disk-polygon overlap area is
(RY/RX) times that of the original ellipse-polygon configuration. To correct
for this shrinkage, the algorithm at a later stage multiplies the disk-
polygon overlap area by (RX/RY), the inverse of the shrinkage factor.

y

20

10
2

r0
0 10 20
6

4

Figure 2-2. Disk-Polygon Overlap Configuration Obtained by Applying
Affine Transformation to Figure 2-1

2-4. REDUCE DISK-POLYGON OVERLAP TO A SEQUENCE OF DISK-WEDGE OVERLAPS.
Appendix A shows how to further reduce the disk-polygon overlap situation to
a sequence of disk-wedge overlaps, and explains how to complete the solution.

2-3
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CHAPTER 3

RESULTS

3-i. INTRODUCTION. This chapter presents some examples of overlap areas
computed using the method expounded in this paper. In this chapter, all
results are given to six significant digits.

3-2. EXAMPLE 1. Suppose that the configuration is that of Figure 2-1 and
Table 3-I. Then the ellipse-polygon overlap area is equal to 321.392. The
area of the polygon is 429.390, and the area of the ellipse is 565.487.

Table 3-1. Values for the Configuration for
Example 1 (Figure 2-i)

Item Symbol Value

0Ellipse center XE 2T7

Ellipse center XE 16.7

Ellipse semi-manor axis RX 20.0

Ellipse semi-minor axis RY 9.0

Ellipse orientation angle TDEG -41 .5o

Polygon Vertex No. 1 PX(1) 37.0

Polygon Vertex No. 1 PY (1) 17.9

Polygon Vertex No.2 PX(2) 28.5

Polygon Vertex No. 2 PY(2) 30.2

Polygon Vertex No 3 PX(3) 12.0

Polygon Vertex No. 3 PY(3) 27.2

Polygon Vertex No. 4 PX(4) 8. 1

Polygon Vertex No.4 PY(4) 18.5

Polygon Vertex No. 5 PX(5) 15.5

Polygon Vertex No. 5 PY(5) 10.0

Polygon Vertex No. 6 PX(6) 31 0

Polygon Vertex No. 6 PY(6) 9.4

S3-1
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3-3. EXAMPLE 2. Disk-rectangle overlap areas may be the most common appli-
cation of the method expounded in this paper. Accordingly, consider the
configuration of Figure 3-i and Table 3-2. The vertices of the rectangular
polygon can easily be found from the informatior given. Alternatively, the
configuration shown can be converted by a simple rigid coordinate translation
and rotation to one in which the rectangle is centered at the origin and has
sides parallel to the coordinate axes--a configuration in which it is easy to
read off the coordinates of the vertices. In either case, the disk-rectangle
overlap area for this example is 903.827.

120

100

80

40 .

20

0-I 
I I I I

0 20 40 60 go 100 120 140

Figure 3-1. Configuration for Example 2

Table 3-2. Values for the Configuration of Example 2
(Figure 3-1)

Item Symbol Value
Rectangie center, x-coordi nate R 80.5
Rectnl etr -oriae8.
Rectangle center, y-coordinate YR 57_5

Rectangle angle H -42

Rectangle length 73

Rectangle width w 37 5

Disk center, x-coordinate xD 111

Disk cente;, y-coordinate YD 66 5

Disk radius r 31

3-2
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3-4. EXAMPLE 3. For the configuration of Figure 3-2 and Table 3-3, the
disk-rectangle overlap area is 131.769.

50

40

30 -

10

"0- I I.

0 10 20 30 40 50

Figure 3-2. Configuration for Example 3

Table 3-3. Values for the Configuration of Example 3
(Figure 3-2) ______

10-

Item Symbol Value

Rectangle center, x-coordinate XR 25
Rectangle center, y-coordinate YR 32

Rectangle angle 0 33-

Rectangle length 1 44

Rectangle width w 7

Disk center, x-coordrnate XD 36
Disk center, y-coordinate xD 36

Disk radius r 10

3-3
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3-5. EXAMPLE 4. For the configuration of Figure 3-3 and Table 3-4, the
ellipse-polygon overlap area is 501.859. The area of the polygon is 727.345.
The area of the ellipse is 552.920.

40-

3 0 -

20 0

10-

*5

00 10 20 30 40 50

Figure 3-3. Configuration For Example 4
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Table 3-4. Values for the Configuration of
Example 4 (Figure 3-3)

Item Symbol Value

Ellipse center XE 274

Ellipse center YE 21 9

Ellipse semi-major axis RX 16.0

Ellipse semi-mrior axis RY 11.0

Ellipse orientation angle TDEG 43,5.

Polygon Vertex No. I PX(1) 47.0

Polygon Vertex No. I PY (1) 19.2

Polygon Vertex No.2 PX(2) 37-7

Polygon Vertex No. 2 PY(2) 32 5

Polygon Vertex No 3 PX(3) 26-2

Polygon Vertex No. 3 PY(3) 35.0

Polygon Vertex No. 4 PX(4) 7.9

Polygon Vertex No.4 PY(4) 14.5

Polygon Vertex No. 5 PX(5) 41.9

Polygon Vertex No. 5 PY(5) 3.0

5-6. EXAMPLE 5. Here we have to deal with a nonconvex polygon. There are
two ways to do this.

a. The first way is to split the polygon into convex components and add
the resultant areas. For the configuration of Example 5 (see Figure 3-4 and
Table 3-5), this can be done by splitting the original polygon into two
convex parts by a line joining vertices 3 and 7. The resulting areas will be
as shown in Table 3-6.

0
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Figure 3-4. Configuration for Example 5
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Table 3-5. Values for the Configuration of
Example 5 (Figure 3-4)

Item Symbol Value

Ellipse center XE 19.0

Ellipse center YE 17.8

Ellipse semi-major axis RX 16.0

Ellipse semi-minor axis RY 11.0

Ellipse orientation angle -DEG 42.0-

Polygon Vertex No. 1 PX(1) 33.3

Polygon Vertex No. I PY (1) 29.8

Polygon Vertex No.2 PX(2) 23.9

Polygon Vertex No. 2 PY(2) 30.4

Polygon Vertex No 3 PX(3) 19.0

Polygon Vertex No. 3 PY(3) 19.0

Polygon Vertex No. 4 PX(4) 1.4
Polygon Vertex No.4 PY(4) 16.2

Polygon Vertex No 5 PX(5) 3.8

Polygon Vertex No. 5 PY(5) 10.1

Polygon Vertex No. 6 PX (6) 11 5

Polygon Vertex No. 6 PY(6) 73

Polygon Vertex No. 7 PX(7) 23.8

Polygon Vertex No. 7 PY(7) 11 0

Polygon Vertex No. 8 PX(8) 35.5

Polygon Vertex No. 8 PY(8) 23.0

Table 3-6. Results of Method 1 for Example 5

Item Area

Polygon 1-2-3-7-8 191.150

Polygon 3-4-5-6-7 170.665

Polygon 1-2-3-4-5-6-7-8 361.815

Ellipse overlap with polygon 1-2-3-7-8 170.231

Ellipse overlap with polygon 3-4-5-6-7 153 182

Ellipse overlap with polygon 1-2-3-4-5-6-7-8 323.413

Ellipse 552.920

'0 
3-.
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b. The second way is to first take the convex hull of the vertices,
and then subtract off areas that are within the convex hull but outside the
original nonconvex polygon. The resulting areas will be as shown in
Table 3-7.

Table 3-7. Results of Method 2 for Example 5

item Area

Polygon 1-2-4-5-6-7-8 445.275

Polygon 2-4-3 93.460

Polygon 1-2-3-4-5-6-7-8 361.815

Ellipse overlap with polygon 1-2-4-5-6-7-8 411.721

Ellipse overlap with polygon 2-4-3 88.308

Ellipse overlap with polygon 1-2-3-4-5-6-7-8 323.413

Ellipse 552.920

c. Either method gives the same final result. If a program is needed to
generate general ellipse-polygon overlap areas, it is not clear which method
would be easier to program.

3-8
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CHAPTER 4

CONCLUSIONS AND OBSERVATIONS

4-1. RESULTS. A simple finite algorithm suffices to calculate the area of
overlap of an ellipse and a (convex) polygon. The resultant algorithm is
widely applicable in the sense that it gives theoretically exact answers for
all possible configurations of the ellipse and the polygon. It is user-
friendly in the sense that its implementation involves a straightforward
computation whose net result is easily discernible. As a result, the
algorithm should be easy to verify, debug, modify, or incorporate confidently
into larger programs. Moreover, the accuracy of the calculated area of over-
lap can be assured by using double-precision arithmetic to control roundoff
error.

4-2. OBSERVATIONS

a. Practical implementation of the algorithm would be aided by developing
subroutines optimized for speed which could be incorporated into large simu-
lations of wargames such as NUFAM, FORCEM, COSAGE, and others.

b. The method yields the exact area of overlap of an ellipse with a
convex polygon. Since a triangle is convex, the method is, in principle,
capable of being used to find the exact area of overlap of an ellipse with
any region that can be triangulated, i.e., any polygon. Triangulation is not
actually necessary--any decomposition of the polygonal region into a finite
number of disjoint convex polygons is sufficient.

c. Many regions that arise in practice can be approximated by polygons.
Hence the method can, in principle, be applied to approximate the area of
overlap of an ellipse with a fairly arbitrary region of the sort that often
arises in practice.

d. Although it may not be the most efficient algorithm for the purpose,
the method can, in principle, be used to find the area of any polygon. All
that is necessary is to find the area of overlap of the polygon with a disk
whose radius is sufficiently large that it completely covers the polygon. If
the area of overlap does not change when the disk's radius is increased
slightly, then the radius is sufficiently large.

4-1
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APPENDIX A

MATHEMATICAL DEVELOPMENT

A-I. INTRODUCTION

a. This appendix presents the mathematical developments on which the rest
of the paper are based. Paragraph 1-7, Chapter 1, and Chapter 2 explained
how the general ellipse-polygon overlap problem is reduced to that of finding
the area of overlap between a disk and a wedge-shaped region. The develop-
ment in this appendix shows how to find the vertex angle of the wedge-shaped
region, how to locate the center of the disk with respect to the wedge, and
how the overlap area is computed. Throughout this appendix, it is assumed
that the polygon's vertices have been transformed to the values (X(J), Y(J))
by the affine transformation described in Chapter 2, and that the ellipse has
been transformed to a disk of radius R centered at (0, 0).

b. Paragraphs A-5 and A-6 on the area of overlap of two disks and two
rectangles are also included for reference, although no use of them is made
elswhere in this paper.

A-2. FINDING THE WEDGE'S VERTEX ANGLE

a. Consider the wedge whose vertex coincides with the polygon's vertex J.
By virtue of the orientation of the polygon (see paragraph 2-2a), vertex J
has a preceding vertex JM (mnemonic for J-minus) and a succeeding vertex
vertex JP. (mnemonic for J-plus). The unit vector, E, from JM to J has
components:

EX = (X(J) - X(JM)) / A

EY = (Y(J) - Y(JM)) / A

where A, the magnitude of the vector from JM to J, is given by:

A = SQR ((X(J) - X(JM)) + (Y(J) - Y(JM))').

The unit vector orthogonal to E and pointing generally toward the interior of
the polygon has components

E' = (-EY, EX).

b. Think in terms of a local Cartesian coordinate system with origin at
vertex J, x-axis along E, and y-axis along E'. Relative to this coordinate
system, the coordinates (AX, AY) of vertex JP, found by taking the dot-
products of the vector from vertex J to JP with E and with E', are:

•-'.
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AX = EX * (X(JP) - X(J)) + EY * (Y(JP) - Y(J))

AY = - EY * (X(JP) - X(J)) + EX * (Y(JP) - (Y(J))

c. Then the wedge angle GAMMA is found as:

GAMMA = ARG (AX, AY),

where ARG (U, V) is the angle from the x-axis to the line joining the origin
to the point at (U, V). Note that the polygon is convex at vertex J if, and
only if, GAMMA is less than PI radians.

A-3. FINDING THE COORDINATES OF THE DISK. The coordinates of the disk
relative to the local coordinate system at vertex J are needed for subsequent
developments. The local coordinates of a disk centered at coordinates (X0,
YD) are found by taking the dot-products of the vector from vertex J to (XD,
YD) with E and with E'. They are:

XO = EX * (XD - X(J)) + EY * (YD - Y(J))

YO = - EY * (XD - X(J)) + EX * (YD - Y(J)).

The polar coordinates (RHO, BETA) of the disk's center in the local
coordinate system at vertex J are also useful. They are given by:

RHO SQR (XO2 + Y02 )

BETA : ARG (XO, YO).

Yet another local coordinate system is useful. Its origin is at vertex J.
Its x-axis is directed in the positive direction from vertex J to vertex JP,
and its y-axis is directed toward the interior of the wedge (and hence away
from the interior of the polygon). The coordinates of the disk's center in
this local coordinate system are:

XG = RHO * COS (GAMMA - BETA)

YG = RHO * SIN (GAMMA - BETA)

A-4. FINDING THE DISK-WEDGE OVERLAP AREA. THe disk-wedge overlap area is
found by treating the different possible disk-wedge overlap cases that can
arise. The possible cases of disk-wedge overlap (for the wedge at vertex J)
are illustrated in Figure A-I, and are described in more detail below.

".A-2
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a. Case 1. Here YO 2 R and YG Ž R. Then the disk is completely
contained within the wedge at vertex J, and the area of overlap is PI * R2

b. Case 2. Here RHO Ž R. And either XG Ž 0 and ABS (YG) 5 R, or XO ? R
and ABS (YO) • R, or both. Then the disk intercepts one or both edges of the
wedge, but does not contain its vertex. Thus, there are either one or two
segments of the disk that lie outside the wedge. The area of the disk-wedge
overlap is equal to the area of the disk less the area of the segment (or
segmcnts) that lie outside the wedge. The area of the excluded segments are
given by the algorithm:

AX = YO (or YG)

AY = SQR (R2 - AX2 )

A = ARG (AX, AY)

ASEG = R' * (A - (SIN (2 * A)) / 2)

c. Case 3. Here the disk covers the vertex of the wedge, and RHO < R.
This case is shown in Figure A-2. Here the center of the disk is located at
(XO, YO). The rim of the disk intercepts the x-axis at coordinates (X1, 0),
and intercepts the other edge of the wedge at coordinates (X2, Y2).

(1) We view the disk-wedge area of overlap as being composed of the
triangle (O,O)-(XI, O)-(X2, Y2) and the segment whose chord is (XI, O)-(X2,
Y2). The area of the triangle is

ATRIANGLE = X1 * Y2 /2.

The area of the segment is

ASEGMENT = R' * (ALF - (SIN (2 * ALF)) / 2),

where ALF is half the angle subtended by the chord at the center of the disk.
It is equal to:

ALF = (T2 - TI) / 2,

where T2 and Ti are the angles shown in Figure A-2. If ALF is negative add
PI radians to obtain a value between 0 and PI radians.

A-4
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(2) 'We now explain how to find the angles T2 and Ti, which completes
the solution. We do this by first finding the coordinates of the points
where the rim of the disk intercepts the X-axis and the other edge of the
wedge. Solving the equation for the rim of the disk:

(X - XO) 2 + (Y - YO) 2 = R1

for Y = 0, and letting Xl be the largest root, gives:

X1 = XO + SQR (R2 
- Y02 ).

Then

Ti = ARG (XI - XO, - YO).

Next, solving the equivalent equation for the rim of the disk:

(X - XG) 2 + (Y - YG) 2 = R2

for YG = 0, and letting X be the largest root, gives:

X = XG + SQR (RI - YG2 ),

and it follows immediately that

X2 = X * COS (GAMMA)

Y2 = X * SIN (GAMMA).

Then

T2 = ARG (X2 - XO, Y2 - YO).

d. Case 4. Here none of the preceding cases applies. Then the disk has
zero area of overlap with the wedge for vertex J. This completes the
soluti n for the disk-wedge overlap area.

A-5. AREA OF OVERLAP OF TWO RECTANGLES

a. Now suppose we want to find the area AF of overlap of two rectangles.
We begin by letting

RROL (MX, MY, x, y, LX, LY)

A-6
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be the area of overlap of two rectangles having the standard configuration
shown in Figure A-3. Here both rectangles have sides parallel to the
coordinate axes. The center of the first rectangle is at the origin. Its
semi-length (dimension parallel to the x-axis) is MX and its semi-width
(dimension parallel to the y-axis) is MY. The center of the second rectangle
is at (x, y). Its semi-length is LX and its semi-width is LY.

I (x +Lx,y + Ly)

L (x,y)

-MX,-MY

Figure A-3. Overlap of Two Rectangles
(see text for explanation)

b. To find RROL, first let

SSOL (M, x, L)

be the length of overlap of two line segments having the standard configu-
ration shown in Figure A-4. Here the first segment is centered at the origin
and has semi-length M. The second segment is centered at x and has semi-
length L. We first observe that

RROL(MX, MY, x, y, LX, LY) = SSOL(MX, x, LX) * SSOL(MY, y, LY),

and this reduces the computation of AF to fin,'ing a convenient algorithm for
SSOL as a function of its arguments.

0
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X-L X X +L

-M 0 M

Figure A-4. Overlap of Two Line Segments

c. To find SSOL we proceed as follows.

SSOL (M, x, L) = SSOL (M, -x, L),

so we may, without loss of generality, replace x by ABS (x).

Also

SSOL (M, x, L) = SSOL (L, -x, M) = SSOL (L, x, M),

so we may, without loss of generality, assume that L is less than or equal to
M. Finally, we observe that when L is less than or equal to M and x is
nonnegative, it is easy to see that

SSOL = 2 * L, if 0 : x 5 (M - L),
SSOL = IL + M - x)+, if (M - L) • x,

where

[zl+ = [z + ABS (z)I/2

is equal to z when z is nonnegative and zero otherwise. This algorithm gives
SSOL as a function of its arguments and is used tn evaluate RROL and from it
the approximate area of overlap.

A-8
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(1) The SSOL function can also be computed in the following manner.
Let

V3 = ABS (M - L), and
V4 = M + L.

Then put

SSOL = 0, if V4 5 ABS (x)
SSOL = V4 - x, if V3 s ABS (x) • V4
SSOL = V4 - V3, if 0 : ABS (x) !' V3.

This method is easily seen to be mathematically identical to the previous
method, but may be easier to program.

(2) A simple program based on the second version might be as follows.

SUBROUTINE SSOL
ENTER WITH: M, x, L
COMPUTE:

0 V3 = ABS (M - L)
'V4 = M + L
XABS = ABS (x)
IF XABS Ž V4 THEN SSOL = 0: RETURN
IF V4 > XABS > V3 THEN SSOL = V4 - XABS: RETURN
SSOL = V4 - V3: RETURN

(END SUBROUTINE SSOL)

A-6. THE AREA OF OVERLAP OF TWO DISKS

a. Introduction. This paragraph presents formulas for the area of
overlap of two disks. We start with the disks in general configuration as
shown in Figure A-5. Here the larger disk has radius R and is centered at
coordinates (xR, YR), while the smaller disk has radius r and is centered at
(xr, Yr). The separation between their centers is

d : SQR I(xR - xr) 2 + (YR - Yr)'1.

0 -
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y

RI

: '•i (XR, YR)

' i'

r I d

i (Xr, YrO

x

Figure A-5. Two Disks in General Configuratinn

The angle (gamma) is measured counterclockwise about the center of the larger
disk, from the x-axis to the center of the smaller disk. It is equal to

(gamma) = ARG (xr - XR, Yr - YR),

where ARG (u, v) is the angle from the x-axis to the point at coordinates
(u, v). By convention, ARG (u,v) is greater than or equal to 0 and is less
than (2 * pi) radians. If u = 0, then

ARG (u,v) = (pi / 2) * SGN(v)

radians. A rigid translation and rotation of coordinates, possibly followed
by a reflection about the y-axis, will transform the general configuration to
the standard configuration shown in Figure A-6.

A-100
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y

£x

Figure A-6. Two Disks in Standard Configuration

* In the standard configuration, the larger disk is centered at the origin and
the smaller disk is centered at the point (d, 0). The transformation
equations are

* xCl = (xr - XR) *cos (gamma) + (Yr - YR) * sin (gamma),

and

I2

d = ABS C-j) =SQR((xR - )(r + (YR - Yr)'I.

* The reduction to standard configuration clearly does not change the area of
overlap. We now find formulas for the area of overlap of two disks in
standard configuration.

b. Area of Overlap. We find the area of overlap by viewing it as the sum
of the area AR bounded by BCDGB and the area Ar bounded by BFDGB, both of

* .
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Now the area 8CDGB is equal to

AR = R2 * ((alpha') - sin (alpha') * cos (alpha')f,

as can easily be seen by noting that it is equal to the area of the sector
ABCDA minus the area of the triangle ABDA. Similarly, the area bounded by
BFDGB is

Ar = r2 * [(beta') - sin (beta') * cos (beta')j.

It is more convenient for further developments to express this in terms of
the complementary angles (alpha) and (beta), where

(alpha) = (pi / 2) - (alpha')

(beta) = (pi /2) -(beta').

Then we can write

AR = RI * [(pi / 2) - (alpha) - sin (alpha) * cos (alpha)I

and

Ar = r2 * [(pi / 2) - (beta) - sin (beta) * cos (beta)).

The angles can be to and from

(alpha) = Arcsin (a / R)

and

(beta) : Arcsin [(d - a) / r],

where a is the length of the line segment AG. Here the Arcsin values are to
be taken as less than or equal to (+pi/2) and greater than or equal to
(-pi/2). The value of a can be determined by eliminating y between the
simultaneous equations

a 2 + y2 = R2

and

(a -d) 2 + y = r2,

where y is the length of the line segment BG, to find

a = (RI - r2 + d') / (2 * d).

A-13
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c. Algorithm. Then the algorithm for DDOL, the area of overlap of two
disks, is as follows. First find

d = SQR[(xR - xr) 2 + (YR - Yr)21,

and note that

DDOL = O, when R + r <_ d,

while

DOOL = (pi) * r', when d _< R-r.

The only remaining case is R - r < d < R + r. In that case, compute

a = (RI - r' + d2) / (2 * d),

(alpha) = Arcsin (a / R), and

(beta) Arcsin [(d - a) / ri.

Then find

AR = RI * [(pi / 2) - (alpha) -sin (alpha) * cos (alpha)],

Ar = r' * [(pi / 2) - (beta) - sin (beta) * cos (beta)J,

and put

DOOL = AR + Ar.

A.
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APPENDIX B

COMPUTER PROGRAMS

B-i. INTRODUCTION. This appendix presents the listing and notes for a
subroutine that implements the algorithms described in Appendix A and was
used to obtain the results presented in Chapter 3.

B-2. PROGRAM NOTES

a. The subroutine is called EPOL, for "Ellipse-Polygon Overlap." Its
listing is at paragraph B-3. Notes on it are provided below.

b. EPOL's inputs are as follows.

(1) XE = x-coordinate of the center of the ellipse.

(2) YE = y-coordinate of the center of the ellipse.

(3) RX = the semi-major axis of the ellipse.

(4) RY = the semi-minor axis of the ellipse.

(5) TDEG = orientation angle of the ellipse, in degrees. The orien-
tation angle is the angle between the semi-major axis of the ellipse
(prolonged if necessary) and the x-axis. It is conventionally restricted to
be greater than -90 degrees and less than or equal to +90 degrees.

(6) (PX(J), PY(J)) = coordinates of the polygon's vertices, listed in
counterclockwise order around the perimeter of the polygon. Here J runs from
I to the number of vertices in the polygon.

c. EPOL's outputs are:

(1) DWOL(J) = disk-wedge overlap areas for each wedge. Here J runs
from I to the number of vertices in the polygon. Note that these areas apply
after the affine transformation described in Chapter 2 has reduced the
ellipse to a disk.

(2) EPOL = ellipse-polygon overlap area.

d. EPOL is written in the APPLESOFT Basic language, which runs on APPLE
11 computers.

e. In line 3010, the call to subroutine 9030 prompts for the number N of
vertices and for their coordinates PX(J), PY(J).

f. In line 3020, the call to subroutine 9110 prompts for the polygon's
coordinates PX(J), PY(J).

*• B-I
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g. In line 3110 and elsewhere, the call to subroutine 63960 returns the
value of A, where A = ARG (AX, AY). Here AX and AY are values supplied to
the subroutine and ARG (AX, AY) is the angle in radians from the x-axis to
the point at coordinates (AX, AY). The value of A will be in the range from
zero to 2* PI radians.

h. In line 3120 and elsewhere, the call to subroutine 63990 is a pause to
allow the user to inspect the information displayed on the screen.

i. In line 3030 and elsewhere, PI = 3.14159265.

B-3. LISTING OF SUBROUTINE EPOL

3000 REM -COMPUTE USING MNEMONICS
3010 IF N = 0 THEN GOSUB 9030: GOSUB3400: GOTO 3030
3020 GOSUB 9110
3025 GOSUB 3400
3030 DPOL = PI * R2 : FOR J = I TO N
3040 DWOL = 0
3050 JP = J + 1: IF JP > N THEN JP = 1
3060 JM = J - 1: IF JM < I THEN JM = N
3070 AX = X(J) - X(JM):AY = Y(J) -Y(JM):A = SQR (AX2 + AY2)
3080 EX = AX/A:EY = AY/A
3090 AX = EX * (X(JP) - X(J)) + EY * (Y(JP) - Y(J))
3100 AY = - EY * (X(JP) - X(J)) + EX * (Y(JP) - Y(J))
3110 GOSUB 63960:GAMMA = A
3120 IF GAMMA > PI THEN HOME : PRINT "POLYGON IS NOT CONVEX AT VERTEX

";J;"!": GOSUB 63990: RETURN
3130 AX = EX * (XD - X(J)) + EY * (YD - Y(J))
3140 AY = - EY * (SC - X(J)) + E X * (YD - Y(J))
3150 GOSUB 63960:BETA = A
3160 XO = AX:YO = AY:RHO = SQR (AX2 + AY2 )
3170 GOSUB 3500
3175 IF DWOL < 0 THEN DWOL = 0
3180 DPOL = DPOL - DWOL:DWOL(J) = DWOL
3185 IF OPOL < = IE - 09 THEN D POL = 0: RETURN
3190 NEXT
3195 EPOL = OPOL/RAXIO
3199 RETURN
3400 REM -REDUCE EPOL TO OPOL
3410 TRAD = PI * TDEG/180
3420 R = RY:RAXIO = RY/RX
3430 FOR J 1 TO N
3440 X(J) = (PX(J) - XE) * COS (TRAD) + (PY(J) - YE) * SIN (TRAD)
3450 Y(J) = - (PX(J) - XE) * SIN (TRAD) + (PY(J) - YE) * COS (TRAD)
3460 X(J) RAXIO * X(J)
3470 NEXT
3480 XD = 0 : YD =
3490 RETURN
3500 REM -COMPUTE DWOL
3510 DWOL = O:DA = PI * R2
3520 IF YO < = R THEN RETURN
3540 IF TAN (GAMMA) = 0 THEN RETURN
3570 DEXTA GAMMA - BETA:YG = RHO * SIN (DEXTA):XG = RHO * COS (DEXTA)
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3590 IF YG < : - R THEN RETURN
3590 IF YO = > R AND YG = > R THEN DWOL = DA: RETURN
3600 IF RHO < R THEN GOSUB 3900 : RETURN
3610 IF XO < = 0 AND XG < = 0 THEN RETURN
3620 NIX = 0
3630 IF XO = > 0 AND ABS (YO) < = R THEN AX = YO: GOSUB 370 O:NIX = NIX +

ASEG
3640 IF XG = > 0 AND ABS (YG) < = R THEN AX = YG: GOSUB 370 O:NIX = NIX +

ASEG
3650 OWOL = DA - NIX: RETURN
3700 REM --- COMPUTE AREA OF SEGMENT
3710 AY = SQR (R2 - AX 2): GOSUB 63960
3720 ASEG = R2 * (A - SIN (2 * A)/2)
3730 RETURN
3800 REM -VERTEX IN DISK CASE
3810 XI = XO + SQR (R2 - Y02 )
3820 AX = XI - XO:AY = - YO: GOSUB 63960:T1 = A
3830 A = XG + SQR (R2 - YG2 ) X2 = A * COS (GAMMA):Y2 = A * SIN (GAMMA)
3840 AX = X2 - XO:AY = Y2 - YO: GOSUB

63960:T2 A
3850 ALF (T2 - T)/2
3860 IF ALF < 0 THEN ALF = ALF + PI: GOTO 3860
3E70 IF ALF > PI THEN ALF = ALF - PI: GOTO 3870
3880 DWOL = R2 * (ALF - SIN (2 * ALF)/2) + Xl * Y2/2
3890 RETURN
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GLOSSARY

1. MODELS, ROUTINES, AND SIMULATIONS

CEM Concepts Evaluation Model

COSAGE Combat Sample Generator

FORCEM Force Evaluation Model

NUFAM Nuclear Fire Planning and Assessment Moot!

VIC VECTOR in COMMANDER

2. DEFINITIONS

[z]+ An expression whose value is z if z is greater than
zero, and zero otherwise.

(relational An expression whose value is plus one if the
expression) relational expression is true, and zero otherwise.

For example, (2 < 3) = +1, and (9 < 5) = 0.

ABS (z) Absolute value of z.

ARG (u, v) The angle about the origin to the point at
coordinates (u, v). If u is equal to zero, then
ARG (u, v) = SGN (v)* (pi/2). By convention, ARG
(u, v) is greater than or equal to zero, and is less
than (2 * pi) radians.

MIN (x, y) The lesser of x and y.

ROOF (z) The least integer greater than or equal to z.

SGN (a) The signum function of a, i.e., +1 if a is greater
than zero, 0 if a is equal to zero, and -1 if a is
less than zero.

SQR (z) Square root of z.
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AN ALGORITHM FOR CALCULATING STUDY
CAA THE AREA OF OVERLAP OF AN SUMMARY

ELLIPSE AND A CONVEX POLYGON CAA-RP-87-4

THE REASON FOR PERFORMING THIS STUDY was to develop and document an
improved algorithm for determining in computer simulations the area of
overlap of an ellipse and a convex polygon.

THE PRINCIPAL FINDINGS are that a useful algorithm can be developed for
determining in computer simulations the area of overlap of an ellipse and a
convex polygon. It appears to be a new method offering many advantages over
those previously proposed.

THE MAIN ASSUMPTION is that the polygon is convex.

THE PRINCIPAL LIMITATION is that numerical roundoff error may, under some
conditions, reduce the accuracy of the result.

THE SCOPE OFTHE WORK is limited to determining the area of overlap of an
ellipse and a convex polygon.

THE RESEARCH OBJECTIVE was to develop and document an algorithm for
determining in computer simulations the area of overlap of an ellipse and a
convex polygon.

THE WORK WAS SUPPORTED BY the US Army Concepts Analysis Agency.
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